Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Category: publications

Morton, J.P., Hensel, M.S., DeLaMater, D.S., Angelini, C., Atkins, R., Prince, K., Williams, S.L., Boyd, A.D., Parsons, J., Resetarits, E.J., Smith, C.S., Valdez, S., Monnet, E., Farhan, R., Mobilian, C., Smith, D., Craft, C.B., Byers, J., Alber, M., Pennings, S.C. and Silliman, B.R. 2024. Mesopredator release moderates trophic control of plant biomass in a Georgia salt marsh. (DOI: 10.1002/ecy.4452)

Predators regulate communities through top‐down control in many ecosystems. Because most studies of top‐down control last less than a year and focus on only a subset of the community, they may miss predator effects that manifest at longer timescales or across whole food webs. In southeastern US salt marshes, short‐term and small‐scale experiments indicate that nektonic predators (e.g., blue crab, fish, terrapins) facilitate the foundational grass, Spartina alterniflora, by consuming herbivorous snails and crabs. To test both how nekton affect marsh processes when the entire animal community is present, and how prior results scale over time, we conducted a 3‐year nekton exclusion experiment in a Georgia salt marsh using replicated 19.6 m² plots. Our nekton exclusions increased densities of plant‐grazing snails and juvenile deposit‐feeding fiddler crab and, in Year 2, reduced predation on tethered juvenile snails, indicating that nektonic predators control these key macroinvertebrates. However, in Year 3, densities of mesopredatory benthic mud crabs increased threefold in nekton exclusions, erasing the tethered snails’ predation refuge. Nekton exclusion had no effect on Spartina biomass, likely because the observed mesopredator release suppressed grazing snail densities and elevated densities of fiddler crabs, whose burrowing alleviates soil stresses. Structural equation modeling supported the hypotheses that nektonic predators and mesopredators control invertebrate communities, with nektonic predators having stronger total effects on Spartina than mud crabs by controlling densities of species that both suppress (grazers) and facilitate (fiddler crabs) plant growth. These findings highlight that salt marshes can be resilient to multiyear reductions in nektonic predators if mesopredators are present and that multiple pathways of trophic control manifest in different ways over time to mediate community dynamics. These results highlight that larger scale and longer‐term experiments can illuminate community dynamics not previously understood, even in well‐studied ecosystems such as salt marshes.

Thompson, M., Pennings, S.C., Schubauer-Berigan, J.P., Herbert, E., Costomiris, G. and Craft, C.B. 2024. Resistance and resilience: Tidal freshwater marsh response and recovery to acute and chronic saltwater intrusion. Estuarine, Coastal and Shelf Science. (DOI: https://doi.org/10.1016/j.ecss.2024.108911)

The ability to both resist and recover from disturbances like storm surge and saltwater intrusion plays a key role in shaping the structure and function of tidal marshes. In this study, porewater chemistry, vegetation, and soil elevation change were measured in field plots of a tidal freshwater marsh exposed to four years of experimental press (chronic) and pulse (acute) brackish water additions followed by five years of recovery to assess their resistance and resilience to saltwater intrusion. Press additions produced significant, widespread changes in marsh structure and function including increased porewater N and P, reduced macrophyte cover and species richness, and loss of soil surface elevation whereas pulse additions had little effect. Once dosing ceased, porewater chemistry, vegetation and soils in press plots recovered at differing rates, with porewater N and P declining to background levels after one year, plant cover and species richness increasing within two to four years, and soil surface elevation increasing to similar levels found in control plots after five years. The plant community in the press treatment converged with the other treatments after 3–4 years, though macrophyte species exhibited varying rates of recovery. Ground cover (Ludwigia repens) and soft stem species (Persicaria) that declined first, recovered faster than Zizaniopsis miliacea that was more resistant but less resilient to brackish water intrusion. While tidal freshwater marshes are resistant and resilient to pulses such as those that stem from hurricanes and storm surges, continued long-term intrusion events like sea level rise (SLR) will likely lead to conversion into brackish marsh. Understanding long-term responses and tradeoffs in resistance and recovery as shown in this experiment offers insight into the future trajectory of tidal freshwater marshes as well as broader ecosystem responses to disturbance and recovery crucial to management and restoration.

Smith, C.S., Zhang, S., Hensel, M.S., Pennings, S.C. and Silliman, B.R. 2024. Long-term data reveal that grazer density mediates climatic stress in salt marshes. (DOI: https://doi.org/10.1002/ecy.4323)

Understanding how climate and local stressors interact is paramount for predicting future ecosystem structure. The effects of multiple stressors are often examined in small-scale and short-term field experiments, limiting understanding of the spatial and temporal generality of the findings. Using a 22-year observational dataset of plant and grazer abundance in a southeastern US salt marsh, we analyzed how changes in drought and grazer density combined to affect plant biomass. We found: (1) increased drought severity and higher snail density both correlated with lower plant biomass; (2) drought and snail effects interacted additively; and, (3) snail effects had a threshold, with additive top-down effects only occurring when snails were present at high densities. These results suggest that the emergence of multiple stressor effects can be density dependent, and they validate short-term experimental evidence that consumers can augment environmental stress. These findings have important implications for predicting future ecosystem structure and managing natural ecosystems.

Yang, Z., Alexander, C.R. Jr. and Alber, M. 2024. The dynamics of marsh-channel slump blocks: an observational study using repeated drone imagery. Biogeosciences. 21:1757-1772. (DOI: 10.5194/bg-21-1757-2024)

Slump blocks are widely distributed features along marsh shorelines that can disturb marsh edge habitats and affect marsh geomorphology and sediment dynamics. However, little is known about their spatial distribution patterns or their longevity and movement. We employed an unoccupied aerial vehicle (UAV) to track slump blocks in 11 monthly images (March 2020–March 2021) of Dean Creek, a tidal creek surrounded by salt marsh located on Sapelo Island (GA, USA). Slump blocks were observed along both convex and concave banks of the creek in all images, with sizes between 0.03 and 72.51 m2. Although the majority of blocks were categorized as persistent, there were also new blocks in each image. Most blocks were lost through submergence, and both decreased in area and moved towards the center of the channel over time. However, some blocks reconnected to the marsh platform, which has not been previously observed. These blocks were initially larger and located closer to the marsh edge than those that submerged, and they increased in area over time. Only 13 out of a cohort of 61 newly created blocks observed in May 2020 remained after 5 months, suggesting that most blocks persist for only a short time. When taken together, the total area of new slump blocks was 886 m2, and that of reconnected blocks was 652 m2. This resulted in a net expansion of the channel by 234 m2 over the study period, accounting for about 66 % of the overall increase in the channel area of Dean Creek, and this suggests that slump block processes play an important role in tidal creek channel widening. This study illustrates the power of repeated UAV surveys to monitor short-term geomorphological processes, such as slump block formation and loss, to provide new insights into marsh eco-geomorphological processes.

Costomiris, G., Hladik, C.M. and Craft, C.B. 2024. Multivariate Analysis of the Community Composition of Tidal Freshwater Forests on the Altamaha River, Georgia. Special Issue: Coastal Forest Dynamics and Coastline Erosion—Series II. Forests. 15(1). (DOI: 10.3390/f15010200)

Situated in the transitional zone between non-tidal forests upstream and tidal freshwater marshes downstream, tidal freshwater forests (TFF) occupy a unique and increasingly precarious habitat due to the threat of saltwater intrusion and sea level rise. Salinization causes tree mortality and forest-to-marsh transition, which reduces biodiversity and carbon sequestration. The Altamaha River is the longest undammed river on the United States East Coast and has extensive TFF, but there have been only limited field studies examining TFF along the entire gradient of salinity and flooding. We surveyed thirty-eight forest plots on the Altamaha River along a gradient of tidal influence, and measured tree species composition, diameter, and height. Hierarchical clustering and indicator species analysis were used to identify TFF communities. The relationship of these communities to elevation and river distance was assessed using non-metric multidimensional scaling (NMDS). We identified six significantly different forest communities: Oak/Hornbeam, Water Tupelo, Bald Cypress/Tupelo, Pine, Swamp Tupelo, and Bald Cypress. Both elevation and river distance were significantly correlated with plot species composition (p = 0.001). Plots at the downstream extent of our study area had lower stem density, basal area, and species diversity than those further upstream, suggesting saltwater intrusion. This study demonstrates the importance of and need for thorough and robust analyses of tidal freshwater forest composition to improve prediction of TFF response to sea level rise.

Smith, R.S., Pennings, S.C., Alber, M., Craft, C.B. and Byers, J. 2024. The resistance of Georgia coastal marshes to hurricanes. Ecosphere. 15(4). (DOI: 10.1002/ecs2.4821)

Ecosystems vary broadly in their responses to disturbance, ranging from highly impacted to resilient or resistant. We conducted a large-scale analysis of hurricane disturbance effects on coastal marshes by examining 20 years of data from 10 sites covering 100,000 ha at the Georgia Coastal Ecosystems Long-Term Ecological Research site distributed across gradients of salinity and proximity to the ocean. We analyzed the impacts of Hurricanes Matthew (in 2016) and Irma (in 2017) on marsh biota (plants, crabs, and snails) and physical attributes (erosion, wrack deposition, and sedimentation). We compared these variables prior to the storms (2000–2015) to years with storms (2016, 2017) to those after the storms (2018–2020). Hurricanes generated storm surges that increased water depth and salinity of oligotrophic areas for up to 48 h. Biological variables in the marsh showed few effects of the hurricanes. The only physical variable affected was creek bank slumping; however, slumping had already increased a year before the hurricanes, suggesting that slumping could have a different cause. Thus, our study uncovered only minor, ephemeral impacts on Georgia coastal marshes, highlighting their resistance to hurricane disturbance of the lower magnitude that typically confronts this region of coastline.

Hawman, P., Cotten, D.L. and Mishra, D. 2024. Canopy Heterogeneity and Environmental Variability Drive Annual Budgets of Net Ecosystem Carbon Exchange in a Tidal Marsh. JGR Biogeosciences. (DOI: 10.1029/2023JG007866)

Tidal salt marshes are important ecosystems in the global carbon cycle. Understanding their net carbon exchange with the atmosphere is required to accurately estimate their net ecosystem carbon budget (NECB). In this study, we present the interannual net ecosystem exchange (NEE) of CO2 derived from eddy covariance (EC) for a Spartina alterniflora salt marsh. We found interannual NEE could vary up to 3-fold and range from −58.5 ± 11.3 to −222.9 ± 12.4 g C m−2 year−1 in 2016 and 2020, respectively. Further, we found that atmospheric CO2 fluxes were spatially dependent and varied across short distances. High biomass regions along tidal creek and estuary edges had up to 2-fold higher annual NEE than lower biomass marsh interiors. In addition to the spatial variation of NEE, regions of the marsh represented by distinct canopy zonation responded to environmental drivers differently. Low elevation edges (with taller canopies) had a higher correlation with river discharge (R2 = 0.61), the main freshwater input into the system, while marsh interiors (with short canopies) were better correlated with in situ precipitation (R2 = 0.53). Lastly, we extrapolated interannual NEE to the wider marsh system, demonstrating the potential underestimation of annual NEE when not considering spatially explicit rates of NEE. Our work provides a basis for further research to understand the temporal and spatial dynamics of productivity in coastal wetlands, ecosystems which are at the forefront of experiencing climate change induced variability in precipitation, temperature, and sea level rise that have the potential to alter ecosystem productivity.

Wang, J., Guo, H., Alber, M. and Pennings, S.C. 2024. Variance reflects resilience to disturbance along a stress gradient: experimental evidence from coastal marshes. Ecology. 2024:e4241. (DOI: https://doi.org/10.1002/ecy.4241)

Quantifying ecosystem resilience to disturbance is important for understanding the effects of disturbances on ecosystems, especially in an era of rapid global change. However, there are few studies that have used standardized experimental disturbances to compare resilience patterns across abiotic gradients in real-world ecosystems. Theoretical studies have suggested that increased return times are associated with increasing variance during recovery from disturbance. However, this notion has rarely been explicitly tested in field, in part due to the challenges involved in obtaining long-term experimental data. In this study, we examined resilience to disturbance of 12 coastal marsh sites (five low-salinity and seven polyhaline [=salt] marshes) along a salinity gradient in Georgia, USA. We found that recovery times after experimental disturbance ranged from 7 to >127 months, and differed among response variables (vegetation height, cover and composition). Recovery rates decreased along the stress gradient of increasing salinity, presumably due to stress reducing plant vigor, but only when low-salinity and polyhaline sites were analyzed separately, indicating a strong role for traits of dominant plant species. The coefficient of variation of vegetation cover and height in control plots did not vary with salinity. In disturbed plots, however, the coefficient of variation (CV) was consistently elevated during the recovery period and increased with salinity. Moreover, higher CV values during recovery were correlated with slower recovery rates. Our results deepen our understanding of resilience to disturbance in natural ecosystems, and point to novel ways that variance can be used either to infer recent disturbance, or, if measured in areas with a known disturbance history, to predict recovery patterns.

Marland, F.C.; Kjerfve, B., and Smith, J.S., 2023. Emergent sandy barriers formed Sapelo Island (Georgia, U.S.A.) during Heinrich events and in the Holocene. Journal of Coastal Research, 39(6), 1068–1081. Charlotte (North Carolina), ISSN 0749-0208.

Sapelo Island’s core consists of five separate barrier islands corresponding to five Heinrich events, H5–H1. During the present interglacial rise of the sea, Holocene barriers (H0) were attached to the most recent paleo-barrier, H1. All barriers have a recurved spit with an intervening backbay tidal marsh. Each barrier is composed of several dune ridges. Beach ridge editions were not formed at their present locations. Sand and other materials emerged from below sea level on the shelf in transgressive, elevated H seas and in the last post-glacial rise of the Holocene interglacial. Fourteen spurious increases of higher sea levels of warmer water in Dansgaard-Oeschger (D-O) events were followed by cooling H intervals with extreme waves during gales, hurricanes, and possibly tsunamis. Deltaic surplus materials on the shelf rolled shoreward. Storms drove deposits onshore in predominant wave episodes of overwash. Pliocene and Pleistocene sand surpluses on the continental shelf in relict river channels and deltas were and are source deposits. The preserved varved chronology is based on analyses of pollen and microfossils from Lake Tulane, Florida. Lake Tulane provides a continuous timeline of comparable radiocarbon ages to Sapelo. Both sites are considered coeval. Overwash deposits on the dry sand beach above average tides were forerunners of dune formation. After storms, backshore sand was trapped within strandlines of Spartina marsh wrack. Materials caught in the straw mulch on the dry sand produced aeolian dune ridges during windswept Nor’easters. High dunes grew from low and coalesced into a series of barriers to form Sapelo Island.

Hardy, Dean. 2023. Flood Risk as Legacy Vulnerability: Reading the past into the present for environmental justice. Geoforum. 142. p.103757.

Decades of environmental justice research has focused on identifying existing patterns of disproportionate burdens to environmental harms across social difference. However, relatively few studies examine the “legacy effect” of historical patterns. In flood risk studies specifically, several scholars have highlighted the role of systemic processes in historically shaping and producing observed disparities in flood risk patterns. These studies reveal that such relations are tied to histories of racialized land struggles and territorial dispossessions. In this paper, I argue that scholars need to do more than quantify today’s disproportionate burdens across social difference or explain the systemic processes causing those disparities. I suggest that “legacy vulnerability” helps identify how the potential for harm from flood risk to marginalized groups may reside in events of the past that have imprinted a spatially hidden, but spatiotemporally revealed unjust pattern upon today’s landscape. In a flood risk assessment of Sapelo Island, the initial results suggest that when comparing contemporary flood risk of Sapelo’s Geechee descendant (Black and mostly low-to-middle income) to non-descendant newcomer owners (mostly white and affluent) an environmental justice disparity in proportional flood risk burden does not exist. However, results of a counterfactual flood risk assessment show that approximately one-third of historically owned, Geechee property is located outside the contemporary 100-year flood zone compared to zero percent outside of it today. In other words, roughly one-third of Geechee property’s flood risk today is a legacy vulnerability directly tied to racialized land dispossessions that unfolded in the middle twentieth century.